(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
or(true, z0) → true
or(z0, true) → true
or(false, false) → false
mem(z0, nil) → false
mem(z0, set(z1)) → =(z0, z1)
mem(z0, union(z1, z2)) → or(mem(z0, z1), mem(z0, z2))
Tuples:
OR(true, z0) → c
OR(z0, true) → c1
OR(false, false) → c2
MEM(z0, nil) → c3
MEM(z0, set(z1)) → c4
MEM(z0, union(z1, z2)) → c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2))
S tuples:
OR(true, z0) → c
OR(z0, true) → c1
OR(false, false) → c2
MEM(z0, nil) → c3
MEM(z0, set(z1)) → c4
MEM(z0, union(z1, z2)) → c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2))
K tuples:none
Defined Rule Symbols:
or, mem
Defined Pair Symbols:
OR, MEM
Compound Symbols:
c, c1, c2, c3, c4, c5
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing nodes:
MEM(z0, nil) → c3
OR(z0, true) → c1
OR(true, z0) → c
MEM(z0, set(z1)) → c4
OR(false, false) → c2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
or(true, z0) → true
or(z0, true) → true
or(false, false) → false
mem(z0, nil) → false
mem(z0, set(z1)) → =(z0, z1)
mem(z0, union(z1, z2)) → or(mem(z0, z1), mem(z0, z2))
Tuples:
MEM(z0, union(z1, z2)) → c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2))
S tuples:
MEM(z0, union(z1, z2)) → c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2))
K tuples:none
Defined Rule Symbols:
or, mem
Defined Pair Symbols:
MEM
Compound Symbols:
c5
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
or(true, z0) → true
or(z0, true) → true
or(false, false) → false
mem(z0, nil) → false
mem(z0, set(z1)) → =(z0, z1)
mem(z0, union(z1, z2)) → or(mem(z0, z1), mem(z0, z2))
Tuples:
MEM(z0, union(z1, z2)) → c5(MEM(z0, z1), MEM(z0, z2))
S tuples:
MEM(z0, union(z1, z2)) → c5(MEM(z0, z1), MEM(z0, z2))
K tuples:none
Defined Rule Symbols:
or, mem
Defined Pair Symbols:
MEM
Compound Symbols:
c5
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
or(true, z0) → true
or(z0, true) → true
or(false, false) → false
mem(z0, nil) → false
mem(z0, set(z1)) → =(z0, z1)
mem(z0, union(z1, z2)) → or(mem(z0, z1), mem(z0, z2))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
MEM(z0, union(z1, z2)) → c5(MEM(z0, z1), MEM(z0, z2))
S tuples:
MEM(z0, union(z1, z2)) → c5(MEM(z0, z1), MEM(z0, z2))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
MEM
Compound Symbols:
c5
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MEM(z0, union(z1, z2)) → c5(MEM(z0, z1), MEM(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:
MEM(z0, union(z1, z2)) → c5(MEM(z0, z1), MEM(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(MEM(x1, x2)) = x2
POL(c5(x1, x2)) = x1 + x2
POL(union(x1, x2)) = [1] + x1 + x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
MEM(z0, union(z1, z2)) → c5(MEM(z0, z1), MEM(z0, z2))
S tuples:none
K tuples:
MEM(z0, union(z1, z2)) → c5(MEM(z0, z1), MEM(z0, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
MEM
Compound Symbols:
c5
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)